Assessment of Forest Personnel Performance in Akwa Ibom State, Nigeria

Imaobong Ufot Nelson, Daniel Etim Jacob*, & Enefiok Sunday Udo
Forest and Natural Environmental Management Department, University of Uyo, Nigeria
*Corresponding author: danieljacob@uniuyo.edu.ng

Doi: https://doi.org/10.47285/far.v2i1.63

Research Article

Abstract
This study assesses the performances of forest personnel in Akwa Ibom State in meeting their target revenue for the state using qualitative and quantitative approaches. The primary data were obtained using a structured questionnaire, oral interviews, and direct observation, while the secondary data were obtained from all the 31 Divisions and the Directorate of Forestry in Akwa Ibom State. Data collected were analyzed using the descriptive and stochastic frontier analysis to assess efficiency. The results obtained showed that the majority of the respondents were male (59.50%), in their economically active and productive age bracket (50.41%), attended tertiary education (79.33%), were married (69.42%), had a family size of fewer than 5 members (71.90%), and received a monthly income of ₦41,000 - ₦50,000 (42.15%). Also, the majority of the respondents had been in service for 11 – 15 years (30.23%), resided in their stations (72.09%), and received various forms of in-training (65.12%) to enhance their effectiveness or performance. Most of the Uniformed Field staff patrolled their divisions daily with their superior visiting their divisions more than once a month. The majority (53.84%) of the Forest Officers had less than 10 years’ experience and their technical efficiency ranged from 0.35 to 0.97. The study, therefore, recommends that a more conducive working environment should be provided for the forest personnel to be able to optimize their performances which would translate to increased revenue generation for the state.

Keywords: Forest personnel, Performance, Efficiency, Forest development, Akwa Ibom State

1. Introduction
The management of the forest estates lies in the hands of forestry personnel comprising professional, technical, uniform, and non-uniform staff (Kalu et al., 2009). The professional personnel is often the unit heads that carry out administrative duties and are superior in rank to all other categories of staff (Edet et al., 2017). According to Edet et al. (2017), Kalu et al. (2009), and Parka (2005), forestry personnel is mandated to formulate and implement forest policies, enforce forest laws and develop forest resources. Other responsibilities include ensuring efficient utilization of forest produce and services through guaranteeing economic viability and long-term social and environmental benefit, protection of forest biodiversity and associated values in
forest management, ensure legal and customary rights of rural communities undertake forest assessment and monitoring as well as recognize timber certification requirement.

To ensure that forest personnel lives up to their responsibilities, there exists a mechanism for appraising their performance. This strategy aims to measure, assess, and improve their performance to achieve set objectives. Performance appraisal (PA) according to Aydin and Tiryaki (2018) and Salau et al. (2014) is a strategic and important approach that requires a regular inspection of the performance of employees in an organization for performing their assigned tasks and responsibilities. The majority of organizations also use the PA approach to determine the factors such as salary increases, promotions, the need for individual development, and the training of employees (Gürbüz and Dikmenli, 2007). PA is thus accepted to be an important tool in order to improve both organizational performance and individual performance of employees.

Furthermore, PA is a continuing procedure that measures the expertise and achievements of employees based on acceptable accuracy and equality (Aydin and Tiryaki, 2018). The employees are subjected to an appraisal process periodically after they are hired. The appraisal activities serve as a guide for managers in making a decision on employees' current job performance, awards, career goals, and other job-related actions based on performance (Gürbüz and Dikmenli, 2007). However, the factors such as differences in the level of education, hiring temporary workers, employment, work experience, time pressures, and shift work might affect the appraisal process as well as employee motivation and productivity (Vasset et al., 2011). Associated with the performance, Bartel et al. (2011) and Bakker et al. (2012) stated that achievement motivation (giving duties and responsibilities, freedom to be creative and initiative, providing feedback on given tasks) and organizational culture (setting norms/employee behavior, exemplary actions of leaders, clarity, and fairness of standard assessment and decision-making, cooperation and good interpersonal communication) have a positive influence on human performance improvement.

In the forestry sector, Nelson and Jacob (2017) and Olaseni et al. (2004) explored the relationship between target revenue and generated revenue performance in Akwa Ibom State and Ondo State respectively. They all reported a strong positive relationship between the target and generated forest revenues. This simply meant that the actual revenues generated were highly dependent on the targeted revenues because the state governments often used incremental budgeting to fix revenue targets in relation to achievement in the preceding years. As these state governments are being confronted with mounting economic recession, external debts, the need to provide health, educational and infrastructural facilities, and the need to provide jobs and promote economic development in their states, they have consistently lacked revenues (Nelson and Jacob, 2017). Their priority has therefore been to maximize available revenue-generating opportunities in their states including promoting the extraction of natural resources including timber in order to generate the revenue required for these programs (Udo, 2016). This paper, therefore, assesses the performances of forest personnel in Akwa Ibom State in meeting its target revenue for the state.

2. Materials and Methods

2.1. Study Area

The study was carried out in Akwa Ibom State, located in the southern part of Nigeria. It lies between latitudes 4°32’ and 5° 53’ North and longitudes 7° 25’ and 8° 25’ East. It is located within the tropical rainforest zone with a landmass of 8,412km² (AKSG, 1989). Akwa Ibom State has a projected population of 5,671,223 persons for 2017 at a growth rate of 3.46% per year (NPC, 2007). The state has 31 Local Government Areas with three gazetted forest reserves namely; Stubbs Creek, Ogu Itu, and Obot Ndom Forest Reserves and other protected forests in each Local Government Area.
Akwa Ibom State has common borders with Cross River State to the East, Abia State to the North, Rivers State to the West, and the Atlantic Ocean to the South (Akwa Ibom Agricultural Development Programme (AKADEP, 2006). The climate of the state is characterized by two seasons – the rainy or wet season, which lasts for about 8 months (mid-March – November), and the dry season (December – early-March). The total annual average rainfall is about 2500mm (Ekanem, 2010). Temperatures are uniformly high throughout the year with slight variation between 26°C and 28°C. A high range of relative humidity (75% - 95.6%) is common across the length and breadth of the State (AKSG, 1989).

2.2. Sampling and Data Collection
The target population for the study was the Forest Officers (FOs) and Uniformed Field Staff (UFS) in the entire 31 Forestry Divisions and Forestry Directorate Headquarters in the study area. The nominal roll in the state forestry directorate was used to identify the number of forest officers and uniformed staff available in all the forest divisions in the state. A total of seventy-nine (79) forest officers were recorded for the entire state, implying at least two forest officers per forest division. For the uniformed staff, a total of fifty-three (53) was recorded in the state.

The design that was adopted for the selection of respondents (forest officers and uniformed field staff) for the study was a complete enumeration of the population in the study area as recommended by FAO (1999) and used by Nelson (2015). This was as a result of the small size of the respondents involved. The instruments used for data collection in the study included a questionnaire, personal interviews, personal observation, and documentary reviews.

3. Data Analysis
Data collected during the study were analyzed using descriptive analysis and stochastic frontier model.

The stochastic production function was expressed as:

$$ Y_i = f(X_i ; \beta) + e_i $$

where, $i = 1, 2, \ldots, N$

$$ e_i = V_i - u_i $$

Where Y_i represented the output level of the ith forest officer; $f(X_i ; \beta)$ was a suitable function such as Cobb-Douglas or translog production function of vector X_i, of input for the the ith forest officer and a vector β, of unknown parameters (Kibaara, 2005; Essilfie et al., 2011);

e_i was an error term made up of two components: V_i was a random error having zero mean, N(0; σ^2_v) and is assumed to be symmetrically and independently distributed as N(0; σ^2_v) random variables and independent of U_i. On the other hand, U_i was a non-negative truncated normal, N(0; σ^2_v) random variable associated with forest officer-specific factors, which led to the ith forest officer not attaining maximum efficiency of production; U_i was associated with technical inefficiency of the forest officer and ranged between zero and one. N represented the number of forest officers involved in the cross-sectional survey of the Directorate of Forestry in the state.

From equation (2), we can rewrite the Technical Efficiency (TE_i) of the forest officer was rewritten as:

$$ TE_i = \frac{Y_i}{Y_i^*} $$

Where $Y_i^* = f(X_i ; \beta)$, the highest predicted value for the ith forest officer

$$ TE_i = \frac{Y_i}{\exp(-U_i)} $$

(4)

Also, the Technical inefficiency of the forest officer was written as:

$$ TI_i = 1 - TE_i $$

(5)
This study specified the stochastic frontier production function using the Cobb-Douglas specification as described by Essilfie et al. (2011). The efficiency model was specified as follows:

\[\ln Y_i = \beta_0 + \sum_{i=1}^{5} \beta_i \ln X_i + e_i \]

(6)

Where \(Y_i \) was the output of the forest officer and \(X_i \) were the inputs (motivation, target revenue, and number of field staff, number of forest officers, years in service) and the \(\beta \)s where the parameters to be estimated.

4. Results and Discussion

4.1. Demographic Characteristics of Respondents

The demographic characteristics of respondents (\(n = 121 \)) in the study area show that the majority (59.50%) of the respondents were males while 40.50% were female (Table 1). The dominance of male workers in the forestry sector could be attributed to some tedious activities in forestry such as tree felling with chainsaws which requires men with sufficient skill who can plan and execute the felling operation with little or no risk. According to the Advisory Committee on Hazardous Substances (ACHS, 2009), there was a gradual entrance of women into various forest activities and the woodworking industry, thus altering the male dominated workforce. According to ACHS (2009), these female employees were often preferred for tasks requiring delicacy and precision such as in areas of research, development and planning, jobs supervision, and risk prevention (ACHS, 2009). The age of the respondents in the study areas ranged from < 25 years to > 44 years (Table 1). However, the majority (50.41%) of the respondents were within the age bracket of 35 – 44 years, followed by those in the age bracket of 25 – 34 years and those above 44 years with 34.71% and 12.40% respectively, while those belonging to less than 25 years were the least with 2.48%. This implied that the majority of the respondents were in their economically active and productive age bracket (Jacob et al., 2013; 2015). Age according to Ndaghu et al. (2011), plays a critical role in productivity, the more energetic an individual is, the higher the possibility of him or her performing better than the very young or older person. This result also corroborated the findings of Ndaghu et al. (2011) and Ikurekong et al. (2009) who reported that age had a positive impact on a person's aggressiveness and flexibility in discharging his or her activities.

However, aging may affect productivity levels for various reasons (Van Ours and Stoeldraijer, 2010). On the one hand, older workers were thought to be more reliable and to have better skills than average workers (Barth et al., 1993). Also, they had higher health care costs, lower flexibility in accepting new assignments, and then might be less suitable for training (Barth et al., 1993). Moreover, age alone was found to be a poor predictor of individual performance as older workers were generally considered to be more consistent, cautious, and conscientious (Van Ours and Stoeldraijer, 2010). Furthermore, older workers had fewer accidents and they were less likely to quit, thus reducing hiring costs (Garibaldi et al., 2010).

Educationally, the predominant education level of the respondents in the study area was tertiary education (79.33%) followed by secondary education (17.36%) and lastly, by primary education with 3.31% (Table 4.1). Higher levels of education may assist workers in adapting to change in the forest industry, particularly technological change (Commonwealth of Australia, 2015). A high level of education is therefore often viewed as indicative of highly skilled workers who are likely to earn a good income and be adaptable to changing needs within an industry, while lower educational levels may indicate lower adaptability, although other factors also influence people’s ability to adapt to change (Commonwealth of Australia, 2015). According to the Commonwealth of Australia (2015), the level of formal qualifications a person has achieved was a good predictor of his or her employment and income-earning capacity. The level of tertiary education attainment in the study area was higher than those recorded for
Australia with less than 10% (Commonwealth of Australia, 2015). However, a very important issue to address was whether the extent of knowledge and skills acquired by these personnel in their educational attainment matched the demand for their work. According to Ackerknecht (2010), many countries, especially, developing countries still have a large number of their forestry workforce requiring proper training in the profession.

Tables 1 further indicated that the majority (69.42%) of the respondents were married while 30.58% were still single. This was an indication that the majority of the respondents had families and a burden to cater for them, thus placing a huge demand on them to be serious with their job. According to the observation of Olatunji and Mokuolo (2014), once an individual has reached the stage of independence and is economically viable, such an individual should get married. This can be viewed from the societal value that is peculiar to culture, which frowns at late marriage and the fact that a married worker derives emotional support from the spouse may douse the job tension after the day's work which may not be available to single workers (Olatunji and Mokuolo, 2014).

Table 1: Demographic characteristics of respondents

<table>
<thead>
<tr>
<th>S/N</th>
<th>Variables</th>
<th>F</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>72</td>
<td>59.50</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>49</td>
<td>40.50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>121</td>
<td>100.00</td>
</tr>
<tr>
<td>2</td>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 25</td>
<td>3</td>
<td>2.48</td>
</tr>
<tr>
<td></td>
<td>25-34</td>
<td>42</td>
<td>34.71</td>
</tr>
<tr>
<td></td>
<td>35-44</td>
<td>61</td>
<td>50.41</td>
</tr>
<tr>
<td></td>
<td>Above 44</td>
<td>15</td>
<td>12.40</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>121</td>
<td>100.00</td>
</tr>
<tr>
<td>3</td>
<td>Educational Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>4</td>
<td>3.31</td>
</tr>
<tr>
<td></td>
<td>Secondary</td>
<td>21</td>
<td>17.36</td>
</tr>
<tr>
<td></td>
<td>Tertiary</td>
<td>96</td>
<td>79.33</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>121</td>
<td>100.00</td>
</tr>
<tr>
<td>4</td>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>37</td>
<td>30.58</td>
</tr>
<tr>
<td></td>
<td>Married</td>
<td>84</td>
<td>69.42</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>121</td>
<td>100.00</td>
</tr>
<tr>
<td>5</td>
<td>Household size</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 5</td>
<td>87</td>
<td>71.90</td>
</tr>
<tr>
<td></td>
<td>6 - 10</td>
<td>34</td>
<td>28.10</td>
</tr>
<tr>
<td></td>
<td>> 10</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>121</td>
<td>100.00</td>
</tr>
<tr>
<td>6</td>
<td>Monthly income level (₦0,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 20</td>
<td>9</td>
<td>7.44</td>
</tr>
<tr>
<td></td>
<td>21- 30</td>
<td>6</td>
<td>4.96</td>
</tr>
<tr>
<td></td>
<td>31- 40</td>
<td>7</td>
<td>5.79</td>
</tr>
<tr>
<td></td>
<td>41- 50</td>
<td>51</td>
<td>42.15</td>
</tr>
<tr>
<td></td>
<td>> 50</td>
<td>48</td>
<td>39.67</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>121</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Source: Field data
The household size of the respondents, as indicated in Table 1, ranged between 1 and 10. The result showed that the majority of them (71.90%) had a family size of fewer than 5 members, followed by those with 6 - 10 members (28.10%). The low number of respondents having a family size of > 5 members against ≤5 members reported for rural households (Olorunsanya and Omotesho, 2011; Javed and Asif, 2011; Oluwatusin and Sekumade, 2016) could probably be as a result of their polygamous nature and lack of family planning among them (Olorunsanya and Omotesho, 2011). Also, it could be attributed to changes in attitudes and behaviors among those whose income is in the upper-middle classes and professionals (civil servants inclusive) (Banks, 1954).

The result in Table 1 also indicated that 42.15% of the respondents received a monthly income of N41,000 - N50,000, followed by those with above N51,000 monthly (39.67%) and less than N20,000 monthly (7.44%) respectively, while 4.96% received between N21,000 - N30,000 monthly. This was an indication that there was an existence of wage differential among the respondents. Wage differentials according to Enu et al. (2014), have to do with the differences in wages that accrue to various jobs and different groups of labor in the labor market. Research carried out by Slichter (1950), Weiss (1966), and Ricaurte (2009) found that wage differentials among workers were a prevalent feature of labor market and these differentials subsisted even after observable individual differences were taken into account. Characteristics such as education, age, and tenure on the workers, profitability, and sales on the firms' side were among the factors that played an important role in explaining wage differentials (Enu et al., 2014).

5. Work Profile of Uniformed Field Staff

The work profiles of the Uniformed Field Staff (UFS) are indicated in Table 2. The results indicate that majority (30.23%) of the respondents had been in service for 11 - 15 years, followed by those with less than 6 years and between 16 - 20 years with 25.58% and 20.93% respectively, while the least were those with more than 20 years in service with 6.98%. This is an indication that more than 74.42% of the respondents had been working as forestry personnel for more than 6 years, hence they possessed appreciable experience or knowledge in the profession. This is in accordance with the observation of Gaballa and Ning (2011) and Bedard and Chi (1993) that professional experience would only be obtained by practice over time as a result of past experiences, direct feedback, and the general knowledge that would lead to accomplishing a task with high quality.

In terms of staff training in service, 65.12% of the respondents agreed that they had received various forms of in-training to enhance their effectiveness or performance while 34.88% of them had no training. In-training, according to Taiwo (2007) is the type of training that an officer or staff undertakes while he is still in the employment of an establishment or institution and it is intended to update the officer's activities at all levels. The indication that more than 65% of the uniform field staff had received some form of training implied that there was still a need for training and retraining of the personnel to enhance their productivity as it was usually impossible to learn all essential techniques required during the pre-services or induction-training period (Taiwo, 2007). According to Williams (1984), O' Donnell and Garavan (1997), and Anao (1993), in-service training was necessary for such a dynamic field like modern agriculture and related discipline such as forestry in a developing country like Nigeria. They went further to state that the training should be regarded as supplementary rather than a substitute for the formal study program. This was particularly so when the formal training is given would be getting outdated. Consequently, training and development reduced the cost and save time for the organization thus leading to higher performance and success (Flynn et al., 1995; Kaynak, 2003; Ruth and Davies, 2004).
Also, the results in Table 2 indicated that 72.09% of the respondents resided in their places of posting while 28.91% of them operated or traveled to their places of work from outside their divisions. This implied that the majority of the respondents did not commute long distances to their workplaces, while about 28% of the respondents commuted longer distances at their own cost and convenience to their workplaces. According to Emre and Elci (2015), living closer to the workplace was often a requirement imposed on the candidates by their employers; hence they were usually indifferent to their commuting problem even as the transportation network was less advanced or almost primitive. The finding that the respondents had to commute to their duty posts at their own cost and convenience agreed with the observation of Emre and Elci (2015) that employers expected their employees to live near their workplaces. Moreover, commuting has inevitable consequences for the workers, and monetary costs of transportation outstand as one of the consequences. Also, besides wasting quality time, it may lead to stress and loss of productivity, and dissatisfaction from the residential location (Koslowsky, 1997).

Commuting usually distorts the rational use of time (Costa et al., 1988). It affects the proper organization of time, often due to the variability of the commuting conditions. As a result of this invariability, whether it is public transport or private vehicle use, lateness is frequently the outcome of any long commute. Since travel time is not easily predicted for most of the commuting modes, with their dependence on environmental factors, commuters tend to arrive late (Emre and Elci, 2015). Beyond concerns of labor productivity, it can be seen as a matter of punctuality and it is the predecessor of future withdrawal behavior, all the way from shirking to absenteeism and finally, turnover (Clark et al., 2005). Also, long commuters experience problems related to the quality of daily life and health (Emre and Elci, 2015).

The Forest Guard protects all forest produce and other government property within his division by patrolling forest boundaries, roads and tracks, and the interior of forest compartments to observe and monitor whether unauthorized operations may be taking place (FAO, 1998). As indicated in Table 4.2, the majority (44.19%) of the respondents patrolled their divisions daily, followed by those who patrolled twice within the week and more than twice weekly, with 30.23% and 18.60% respectively, while 6.98% patrolled their division once weekly. This implied that more than 55% of the respondents did not patrol their divisions daily, hence portraying ineffective patrol by the forest guards as the forest land covered a large area, which could result in illegal exploitation. This observation agreed with MacKinnon et al. (1986), Dixon and Sherman (1990), Clarke et al. (1993), and Robinson (2008) that illegal extraction of natural resources from forests was a problem confronted by officials in many developing countries, with only limited success.

The visitation of senior staff to the charge under each uniformed forest staff is indicated in Table 2. The result showed that more than 74% of the respondents admitted that their superior officers visited their divisions more than once a month. Specifically, 39.53% of them admitted visitation to their divisions by their superior officers twice a month, while those who reported more than twice a month accounted for 34.88%. According to Asiedu-Akrofi (1978), supervision work was formal and person-to-person as it involved communicating with the staff. Thus, the supervisors must be good listeners, hearing not only what was said but also through observation was and finally communicating the same to the management to ensure that they heard the voice of the subordinates. The more than once visited by the senior officers implied that there was likely to be good communication with their subordinates to enhance their performance and improve their learning opportunities for staff development or in-service training (Joyce and Showers, 1988). Also, their visits helped them to scan their subordinate environment and know exactly what the situation was, using their managerial processes; planning, organizing, directing, coordinating, evaluating, to adapt means of meeting set goals (Joyce and Showers, 1988). As indicated in the results (Table 2), monitoring and controlling forestry practices and revenue collection by the supervisors were inadequate. The irregular monitoring by Forestry Department
Headquarters Staff was also a contributing factor to the evasion of charges (FAO, 2001). Field visits were irregular due to difficulties with transport and the lack of money for allowances; therefore, field staff was not very worried about colluding with the private-sector, because they knew that audits by headquarters staff were very infrequent. This has led to field staff becoming increasingly alienated towards good forestry practice and has led to low productivity and low levels of forest revenue collection (FAO, 2001).

Table 2: Work profile of uniformed field staff

<table>
<thead>
<tr>
<th>S/N</th>
<th>Variables</th>
<th>F</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Years in service</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 6</td>
<td>11</td>
<td>25.58</td>
</tr>
<tr>
<td></td>
<td>6 - 10</td>
<td>7</td>
<td>16.28</td>
</tr>
<tr>
<td></td>
<td>11 - 15</td>
<td>13</td>
<td>30.23</td>
</tr>
<tr>
<td></td>
<td>16 - 20</td>
<td>9</td>
<td>20.93</td>
</tr>
<tr>
<td></td>
<td>> 20</td>
<td>3</td>
<td>6.98</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>43</td>
<td>100.00</td>
</tr>
<tr>
<td>2</td>
<td>Training in service</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>28</td>
<td>65.12</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15</td>
<td>34.88</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>43</td>
<td>100.00</td>
</tr>
<tr>
<td>3</td>
<td>Residing in division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>31</td>
<td>72.09</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>12</td>
<td>27.91</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>43</td>
<td>100.00</td>
</tr>
<tr>
<td>4</td>
<td>Weekly patrol of charge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Once</td>
<td>3</td>
<td>6.98</td>
</tr>
<tr>
<td></td>
<td>Twice</td>
<td>13</td>
<td>30.23</td>
</tr>
<tr>
<td></td>
<td>More than twice</td>
<td>8</td>
<td>18.60</td>
</tr>
<tr>
<td></td>
<td>Daily</td>
<td>19</td>
<td>44.19</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>43</td>
<td>100.00</td>
</tr>
<tr>
<td>5</td>
<td>Senior staff visit per month</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Once</td>
<td>11</td>
<td>25.58</td>
</tr>
<tr>
<td></td>
<td>Twice</td>
<td>17</td>
<td>39.54</td>
</tr>
<tr>
<td></td>
<td>More than twice</td>
<td>15</td>
<td>34.88</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>43</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Source: Field data

6. Work Condition of Forest Officers

The result in Table 3 indicates the work condition of forest officers. The results revealed that the majority (53.84%) of the respondents were in the service as forest officers for less than 10 years. This implied that the majority of them were still a novice and may lack the necessary experience in the profession. According to Biggs and Watins (1988), novices spend about 32% of their time and effort to obtain preliminary information to solve a problem in the analytical review, while experts (officers with experience) spend only 12.5% of their time and effort to obtain relevant information which means that the beginners do not have good knowledge of the problem, while experts have a better knowledge of the problem (Biggs and Watins, 1988). Also, studies
have long argued that employees with more years of service know-how to perform their jobs better (Wagner et al., 1987), whereas poor-performing employees are likely to be weeded out before they accumulate many years of service (Schneider et al., 1995).

The majority (93.59%) of the respondents reported that the staff strength (vocational and technical) in their divisions was not sufficient for the effective discharge of their duties, while only 6.41% agreed that they had enough staff to work within their divisions. These responses were true considering that the number of forestry personnel in the state was fewer than the FAO (1970) recommended staff strength for its landmass. The staff ratio baseline for a forest area with 300km² requires a total staff strength of 183 personnel in a ratio of 3: 12: 48: 120 (professionals, technical staff, uniformed field staff, and unskilled staff). (FAO, 1970; Kalu et al., 2009 and Edet et al., 2017). This is an indication that there was insufficient manpower in the forestry sector in the state, thus agreeing with the observations of FAO (2003), Ezebilo (2004), Agbogisi and Ofuoku (2009), Udo et al. (2009), Jacob et al. (2012), Akinsoji (2013) and Sule (2013) that there existed inadequate forestry personnel in Nigeria.

The shortage in the manpower strength in the forestry sector could be attributed to retirements, deaths, and transfers to other departments, and lack of employment into the service for a long time (FAO, 2003). The respondents’ satisfaction with their revenue allotment is indicated in Table 3. The result showed that 91.03% of the respondents were not satisfied with the allotment given to them as revenue targets they had to meet annually. This was attributed to their inability to meet the revenue targets (Table 3) as only 11.54% of them were able to meet their given targets. This finding agreed with that of Udo (1980) that most of the forest officers were usually not able to meet the revenue targets allotted to them by the head office. Also, this level of dissatisfaction observed among the respondents was higher than the 66.6% observed by Udo (1980) among forest officers in Cross River State.

The performance of the respondents in meeting their revenue targets is also indicated in Table 3. The results showed that the majority (88.46%) of the respondents could not meet set annual revenue targets. Specifically, 26.92% of the respondents were able to meet 76 – 100% of their revenue targets; 50% met 51-75% of set targets, while 23.08% met less than 50% of set annual revenue targets. This implied that more than 76% of the respondents were able to exceed their target revenue and majorities (65.38%) of them are satisfied with their level of performance. The above-average performance of the respondents could be attributed to the arbitrary nature in which revenue targets are set (FAO, 2001). The Forestry Departments are forced to aim at revenue targets that are not in tune with good forest management practices since they are usually fixed in relation to the preceding year’s performance (Udo, 1980; Udo, 1999; FAO, 2001). When a target cannot be met in one year, it is reduced in the following year and vice-versa as reported by Udo (1980) in Cross River State, Nigeria.

The result in Table 3 also shows the level of appreciation of the performance of the respondents by the head office. The majority (65.38%) of the respondents reported not being appreciated for their level of performance in revenue generation, while 34.62% claimed to be appreciated. As indicated in Table 3, the majority of those who were appreciated were given written letters of appreciation (70.37%), and the rest were appreciated verbally (29.63%), while none (0.00%) of the respondents reported ever receiving any cash or award as a means of appreciation for their performance on revenue generation. The result showed that only a few of the respondents were appreciated for their performance. This could have an impact on the psychology of the respondents as their performances were recognized, this would encourage them to work harder as employee recognition and appreciation can improve productivity and increase satisfaction on the job. This is in agreement with the observation of Benson and Schultz (2015) who reported that one of the laws of psychology positively articulated that if you want someone to repeat a behavior you should positively recognize the behavior immediately. Also, some studies (Darling et al., 1997; Daniels, 1999; Nelson, 2005; Gostick and Elton, 2007; Tessema
et al., 2013) reported that recognizing and appreciating employees was one valuable reason that would make them feel treasured and become more positive about themselves and their capacity to contribute.

<table>
<thead>
<tr>
<th>Table 3: Work condition of forest officers</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/N</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Source: Field data
7. Assessment of Uniformed Field Staff Performance

The various criterion used for assessing uniformed field staff by their superior forest officer is indicated in Table 4. Among them include itineraries, patrols, offense detection, and level of revenue generation. For itineraries, prompt report submission (80.77%) was considered as the most effective criterion of assessment as it enables the forest officer to make their report on time, especially, monthly revenue returns to the headquarters, followed by strict adherence to instruction (11.54%) and delay in submission of the report (7.69%). In the assessment of the level of staff patrol, the frequency of patrol was the most used criterion (50%) as it would ensure that offenses are detected promptly and reported. It also helped the forest guard in discharging his/her duties such as pass-hammering of forest products and safeguarding valuable trees of the forest and the forest estate in general. This was followed by the effectiveness of the patrol (30.77%) and lastly by infrequent patrols (19.23%) by the uniformed field staff. In terms of offense detection as a criterion for assessment, the promptness of reporting offense was the most used criterion (80.77%) as it is expected that staff that is consistent about the prompt report of any observed offense (s) will also have consistent performance or be more committed and diligent in their work.

Staff encouragement of offense or connivance of the officer (12.82%) with illegal timber exploiters was considered as the second criterion and the least criterion was the detection of offense by the superior officer (6.41%). The performance of the uniformed field staff was also assessed in terms of revenue generation using five different classes ranging from excellent to poor (Table 4). Excellent (58.97%) was the most used level of assessment, while poorly generated revenue was considered as the least (7.69%) response of assessment, while none of the respondents agreed to have used fair (0.00%) as the response of assessing the level of staff performance in terms of revenue generation. Excellent was the most used level of assessment of the uniformed field staff by the forest officer because it is essential for the growth of an organization based on the employees' human capital development.

Table 4: Criteria for assessing uniform field staff performance

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Assessment</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itineraries</td>
<td>Prompt submission of the report</td>
<td>63</td>
<td>80.77</td>
</tr>
<tr>
<td></td>
<td>Delayed submission of the report</td>
<td>6</td>
<td>7.69</td>
</tr>
<tr>
<td></td>
<td>Strict adherence to instruction(s)</td>
<td>9</td>
<td>11.54</td>
</tr>
<tr>
<td></td>
<td>Not applicable</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>78</td>
<td>100.00</td>
</tr>
<tr>
<td>Patrons</td>
<td>Frequent</td>
<td>39</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>Infrequent</td>
<td>15</td>
<td>19.23</td>
</tr>
<tr>
<td></td>
<td>Effective</td>
<td>24</td>
<td>30.77</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>78</td>
<td>100.00</td>
</tr>
<tr>
<td>Offense detection</td>
<td>Cases promptly reported</td>
<td>63</td>
<td>80.77</td>
</tr>
<tr>
<td></td>
<td>Offense encouragement or connivance</td>
<td>10</td>
<td>12.82</td>
</tr>
<tr>
<td></td>
<td>Detection by senior staff</td>
<td>5</td>
<td>6.41</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>78</td>
<td>100.00</td>
</tr>
<tr>
<td>Revenue</td>
<td>Excellent</td>
<td>46</td>
<td>58.97</td>
</tr>
<tr>
<td></td>
<td>Very good</td>
<td>9</td>
<td>11.54</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>17</td>
<td>21.80</td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td>6</td>
<td>7.69</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>78</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Source: Field data
This is agreed with the statement of Brefo-Manuh et al. (2016) that employee performance appraisals were one of the essential and most popular human resource management and development practices globally (Boswell and Boudreau, 2002; Lillian et al., 2011; Baruch, 1996). Also, most organizations or institutes perform appraisal systems because they believe it is a vital source of human capital development and a system that can provide avenues for making essential decisions such as employee training and development, promotion, demotions, layoffs, among others (Rao, 2009). Also, according to Lillian et al. (2011), results that are obtained from performance appraisal exercises can be used in respect of employee staff training and development. They further added that it is a vital tool that may be utilized by employers to motivate and retain the needed quality human resources that a particular organization may require to facilitate the realization of its goals.

8. Efficiency Distribution of Forest Officers
The distribution of technical efficiency among forest officers in the study area is presented in Figure 1. The predicted technical efficiency of the forest officers varied substantially, ranging from 0.35 to 0.97. The distribution of technical efficiency in Figure 1 showed that 28.21% of the forest officers wherein a technical efficiency class range of 0.81 - 0.90, followed by 0.61 – 0.70 (19.23%), 0.71 – 0.80 (16.67%), and 0.91 – 1.00 technical efficiency (16.67%) respectively. Those with a technical efficiency class range of less than or equal to 0.50 were the least with 5.13%. This was an indication that there was a wider distribution of technical efficiency among the forest officers in the study area which revealed that more should be done in order to positively affect the improvements in the technical efficiency of the forest officers. The overall mean technical efficiency of the forest officers was 0.74 which indicated that forest officers still had room to improve their revenue efficiency by 0.26. This efficiency index was lower than 95.00% reported by Jacob et al. (2018) for Old Oyo National park. The ability of forest personnel to achieve the goal of its office strongly depends on the environment under which he/she operates. This implies that the officer can neither be separated from, nor superior to, the environment in which he/she finds him/herself and so its environment continually impacts either positively or negatively on his/her operations.

![Figure 1: Frequency Distribution of Individual Technical Efficiency Measure](image-url)
9. Conclusion and Recommendation
The study revealed that the majority of the Forest Officers in Akwa Ibom State were male and relatively new to the service hence, they were not knowledgeable in the profession. Also, due to inadequate technical and vocational staff, they were not able to meet their yearly revenue target. The findings also show that the performance of uniformed field staff was assessed in terms of revenue generation using five different classes ranging from excellent to poor while technical efficiency of the forest officers varied substantially, ranging from 0.35 to 0.97. However, the Majority of the respondents reported not being appreciated for their level of performance. The study, therefore, recommends that a conducive working environment should be provided for the forest personnel to be able to optimize their performances which would translate to increased revenue generation for the state. Also, efforts should be made to encourage and recruit more women into the profession either through training or job placement in both the public and private sectors.

Authors’ Contributions: Imaobong Nelson and Daniel Jacob contributed towards the paper concept, literature review, data collection, analysis, and discussion, while Enefiok Udo contributed in concept, literature review, and final preparation of the manuscript.

Conflict of Interest: The authors declare no conflict of interest.

REFERENCES

